Understanding the Brain

Electroreception

From Cognopedia
Jump to: navigation, search

Electroreception, sometimes called electroception, is the biological ability to perceive electrical impulses. It has been observed nearly only in aquatic or amphibious creatures since water is a much better conductor than air. It is used for electrolocation (detecting objects) and for electrocommunication.

Overview

Active electrolocation. Conductive objects concentrate the field and resistant objects spread the field.

Electroreception is found in monotremes, certain cetaceans, lampreys, cartilaginous fishes (sharks, rays, chimaeras), lungfishes, bichirs, coelacanths, sturgeons, paddlefishes, catfishes, gymnotiformes and elephantfishes. The electroreceptors are believed to be derived from the lateral line. In most of these groups, electroreception is passive, while the weakly electric knifefishes and elephantfishes engage in active electroreception.

Electrolocation

Electroreceptive animals use this sense to locate objects around them. This is important in ecological niches where the animal cannot depend on vision: for example in caves, in murky water and at night. Many fish use electric fields to detect buried prey. Some shark embryos and pups "freeze" when they detect the characteristic electric signal of their predators[1].


Passive electrolocation

In passive electrolocation, the animal senses the weak bioelectric fields generated by other animals and uses it to locate them. These electric fields are generated by all animals due to the activity of their nerves and muscles. A second source of electric fields in fish is the ion pumps associated with osmoregulation at the gill membrane. This field is modulated by the opening and closing of the mouth and gill slits[1] [2]. Many fish that prey on electrogenic fish use the discharges of their prey to detect them. This has driven the prey to evolve more complex or higher frequency signals that are harder to detect[3].

Passive electroreception is carried out solely by ampullary electroreceptors in fish. It is tuned to low frequency signals (less than 1 Hz to tens of Hz).

Fish use passive electroreception supplement or replace their other senses when detecting prey and predators. In sharks, sensing an electric dipole alone is sufficient to cause them to try and eat it.

It has been proposed that sharks can use their acute electric sense to detect the earth's magnetic field by detecting the weak electric currents induced by their swimming or by the flow of ocean currents.

Active

In active electrorelocation, the animal senses its surrounding environment by generating electric fields and detecting distortions in these fields using electroreceptor organs. This electric field is generated by means of a specialised electric organ consisting of modified muscle or nerves. This field may be modulated so that its frequency and wave form are unique to the species and sometimes, the individual (see Jamming avoidance response). Animals that use active electroreception include the weakly electric fish, which generate small electrical pulses (typically less than one volt). Weakly electric fish can discriminate between objects with different resistance and capacitance values, which may help in identifying the object. Active electroreception typically has a range of about one body length, though objects with an electrical resistance similar to that of the surrounding water are nearly undetectable.

Electrocommunication

Weakly electric fish can also communicate by modulating the electrical waveform they generate, an ability known as electrocommunication.[4] They may use this for mate attraction and territorial displays. Some species of catfish use their electric discharges only in agonistic displays.

One species of Brachyhypopomus, the electric discharge pattern is similar to the low voltage electrolocative discharge of the electric eel. This is hypothesised to be a form of batesian mimicry of the dangerous eel.[5]


Sensory Mechanism

Active electroreception relies upon tuberous electroreceptors which are sensitive to high frequency (20-20,000 Hz) stimuli. These receptors have a loose plug of epithelial cells which capacitively couples the sensory receptor cells to the external environment. Passive electroreception however, relies upon ampullary receptors which are sensitive to low frequency stimuli (below 50 Hz). These receptors have a jelly-filled canal leading from the sensory receptors to the skin surface. Mormyrid electric fish from Africa use tuberous receptors known as Knollenorgans to sense electric communication signals.

Occurrence

Elasmobranchii

Electroreceptors (Ampullae of Lorenzini) and lateral line canals in the head of a shark.

Sharks and rays (members of the subclass Elasmobranchii) rely heavily on electrolocation in the final stages of their attacks, as can be demonstrated by the robust feeding response elicited by electric fields similar to those of their prey. Sharks are the most electrically sensitive animals known, responding to DC fields as low as 5 nV/cm.

The electric field sensors of sharks are called the ampullae of Lorenzini. They consist of electroreceptor cells connected to the seawater by pores on their snouts and other zones of the head. A problem with the early submarine telegraph cables was the damage caused by sharks who sensed the electric fields produced by these cables. It is possible that sharks may use Earth's magnetic field to navigate the oceans using this sense.

Bony fish

The Platypus also uses electroreception.

The electric eel, besides its ability to generate high voltage electric shocks, uses lower voltage pulses for navigation and prey detection in its turbid habitat. This ability is shared with other gymnotiformes.

Monotremes

The electroreceptors of monotremes consist of free nerve endings unlike the specialised receptor cells of fish and amphibians. They are located in the mucous glands of the snout. Among the monotremes the platypus has the most acute electric sense.[6][7] The platypus appears to use electroreception along with pressure sensors to determine the distance to prey from the delay between the arrival of electrical signals and pressure changes in the water.[7] The electrorecptive capabilities of the two species of echidna (which are terrestrial) are much more simple. Experiments have shown that they can be trained to respond to weak electric fields in water and moist soil. This behaviour is believed to be used in hunting for buried prey after rains. [8] The electric sense of the echidna is hypothesised to be a evolutionary remnant from a platypus-like ancestor.[7]

Dolphins

The vibrassal crypts of the Guiana dolphin (Sotalia guianensis) were shown to be capable of electroreception sufficient to detect small fish, as low as 4.8 μV/cm².[9]

See also

References

  1. 1.0 1.1 Coplin, Shaun P.; Darryl Whitehead (2004). "The functional roles of passive electroreception in non-electric shes". Animal Biology 54 (1): 1-25. doi:10.1163/157075604323010024. 
  2. BODZNICK, DAVID; JOHN C. MONTGOMERY AND DAVID J. BRADLEY (1992). "SUPPRESSION OF COMMON MODE SIGNALS WITHIN THE ELECTROSENSORY SYSTEM OF THE LITTLE SKATE RAJA ERINACEA". J. exp. Biol. 171: 107-125. 
  3. Stoddard, Philip K. (2002). "The evolutionary origins of electric signal complexity". Journal of Physiology - Paris 96: 485–491. doi:10.1016/S0928-4257(03)00004-4. 
  4. Hopkins, CD (May 1999). "Design features for electric communication". J Exp Biol 202 (Pt 10): 1217–1228. PMID 10210663. 
  5. Stoddard, PK. (Jul 1999). "Predation enhances complexity in the evolution of electric fish signals.". Nature 400 (6741): 254-6. doi:10.1038/22301. PMID 10421365. 
  6. H, Scheich; Langner G, Tidemann C, Coles RB, Guppy A. (1986 January 30-February 5). "Electroreception and electrolocation in platypus". Nature (Nature Publishing Group) 319 (6052): 401–2. doi:10.1038/319401a0. PMID 3945317. 
  7. 7.0 7.1 7.2 Pettigrew, John D. (1999). "Electroreception in Monotremes" (PDF). The Journal of Experimental Biology (202): 1447–1454. http://jeb.biologists.org/cgi/reprint/202/10/1447.pdf. Retrieved 19 September 2006. 
  8. Proske, U.; J. E. Gregory and A. Iggo (1998). "Sensory receptors in monotremes". Phil. T rans. R. Soc. Lond. B 353: 1187-1198. PMID PMC1692308. 
  9. Czech-Damal, Liebschner, Miersch, Klauer, Hanke, Marshall, Dehnhardt & Hanke. 2011. Electroreception in the Guiana dolphin (Sotalia guianensis). Proc Roy Soc B http://dx.doi:10.1098/rspb.2011.1127

External links